Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340999

RESUMO

Ferromanganese spinel oxides (MnFe2O4, MFO) have been proven effective in activating persulfate for pollutants removal. However, their inherent high surface energy often leads to agglomeration, diminishing active sites and consequently restricting catalytic performance. In this study, using Al-MCM-41 (MCM) mesoporous molecular sieves derived from natural attapulgite as a support, the MFO/MCM composite was synthesized through dispersing MnFe2O4 nanoparticles on MCM carrier by a simple hydrothermal method, which can effectively activate persulfate (PS) to degrade Tetracycline (TC). The addition of Al-MCM-41 can effectively improve the specific surface area and adsorption performance of MnFe2O4, but also reduce the leaching amount of metal ions. The MFO/MCM composite exhibited superior catalytic reactivity towards PS and 84.3% removal efficiency and 64.7% mineralization efficiency of TC (20 mg/L) was achieved in 90 min under optimized conditions of 0.05 mg/L catalyst dosage, 5 mM PS concentration, room temperature and no adjustment of initial pH. The effects of various stoichiometric MFO/MCM ratio, catalyst dosage, PS concentration, initial pH value and co-existing ions on the catalytic performance were investigated in detail. Moreover, the possible reaction mechanism in MFO-MCM/PS system was proposed based on the results of quenching tests, electron paramagnetic resonance (EPR) and XPS analyses. Finally, major degradation intermediates of TC were detected by liquid chromatography mass spectrometry technologies (LC-MS) and four possible degradation pathways were proposed. This study enhances the design approach for developing highly efficient, environmentally friendly and low-cost catalysts for the advanced treatment process of antibiotic wastewater.


Assuntos
Óxido de Alumínio , Ferro , Compostos de Magnésio , Óxido de Magnésio , Manganês , Óxidos , Compostos de Silício , Dióxido de Silício , Poluentes Químicos da Água , Antibacterianos , Tetraciclina/química , Poluentes Químicos da Água/análise
2.
ACS Omega ; 4(15): 16309-16317, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616808

RESUMO

Designing a composite separator that can withstand high temperature, deliver high capacity, and offer fast charge-discharge capability is imperative for developing a high-performance lithium-ion battery. Here, a series of ceramic nanoparticle-coated nanofiber membranes, including Al2O3/poly(vinylidene fluoride) (PVDF), SiO2/PVDF, and Al2O3/SiO2/PVDF, were prepared by melt-electrospinning and magnetron sputtering deposition. Among all of these composite separators, Al2O3/SiO2/PVDF showed several advantages including excellent thermal stability (no dimensional shrinkage at temperature up to 130 °C and an onset degradation temperature of 445 °C) and superb electrolyte compatibility (340% electrolyte uptake). In addition, the ß phase of the fibrous PVDF membrane as well as the presence of polar ceramic nanoparticles on the fiber surface can synergistically improve the ion conductivity to 2.055 mS/cm at room temperature, which is more than 8 times higher than that of the commercial polyethylene (PE) separator. Performance of these ceramic nanoparticle-coated separators in a lithium-ion battery demonstrated an improved discharge capacity of 161.5 mAh/g and more than 84.3% capacity retention rate after 100 cycles. The ceramic nanoparticle-coated PVDF separators also maintained 58.4% capacity at a high current density of 8C, which is better than the 49.8% capacity for the commercial PE separator. Therefore, the ceramic nanoparticle-coated PVDF membrane proves to be a promising separator for a high-power and more secure lithium-ion battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...